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1 Objectives

1. Extend the knowledge of exploratory factor analysis to con�rmatory factor
analysis.

2. Understand and apply the basic knowledge about the analysis.

3. Specify the measurement model, �t the model, revise the model if required
in lavaan, and interpret the results.

2 Introduction

• In CFA model is speci�ed; the factors, the items under each factor, and
the pattern of relationships between them.

• Usually analysis is done on covariance matrix.

• How the variance-covariance matrix produced from the model �ts the
variance-covariance matrix of the observed data → Goodness of �t of
model to the data.

• Needs strong theoretical speci�cation of the model ahead of the analysis.

• CFA is actually part of Structural Equation Modeling (SEM), which ba-
sically consists of two components:

1. measurement model (CFA): dealing with latent variables (factors)
and the relationships between the items and the factors, which is our
main focus here.

2. structural model (path analysis): dealing with how latent variables
are related to each other.

3 Common factor model

• Recall back our common factor model, the variance consists of 2 parts:

1. Common variance, which is the variance accounted by the latent
factor, i.e. the variance shared between the related items.

2. Unique variance, which is the variance speci�c to the item. It can be
further partitioned into systematic error and random error variances.

• Basic equation revisited:

yj = λj1η1 + λj2η2 + . . .+ λjmηm + εj
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where yj is the j th of p observed variables, λjm is the j th factor loading
corresponding to m latent factor, ηm is the latent factor and εj is the j th
unique variance. Or further simpli�ed in form of

y = Λyη + ε

where y is the observed variables, Λy is the factor loadings of y variables,
η is the latent factors and ε is the unique variances. Or sometimes in its
expanded matrix form as

Σ = ΛyΨΛ
′

y + Θε

where Σ is the p× p correlation matrix of p items, Λy is the p×m factor
loading matrix, Ψ is the m × m factor correlation matrix and Θε is the
p× p diagonal matrix of unique variances.

• For example, our previous STATISTICS IMPORTANCE factor consists
of 3 items:

I1 = λ11η1 + ε1

I2 = λ21η1 + ε2

I3 = λ31η1 + ε3

can be represented as
I = ΛIη + ε

or as a path diagram (Figure 1)
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Figure 1: Path diagram for STATISTICS IMPORTANCE factor

4 Scaling the factor

• Latent variable is an unobserved variable, it has to be scaled by a method
to de�ne its metrics/unit of measurement. The approaches are:

� Marker/reference indicator variable approach. By setting the metric
of latent variable to one of its item. The most common approach.

� Variance of latent variable is set to 1.

5 Degrees of freedom

• To perform CFA, the model also needs statistical identi�cation. Depend-
ing on the df

� df>0: Overidenti�ed, which is what we want to perform CFA. Num-
ber of known parameters, b > unknown parameters, a (freely esti-
mated parameters).
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� df=0: Just identi�ed, b=a. Always perfect �t, cannot apply the
goodness-of-�t assessment. Also not for the analysis.

� df<0: Underidenti�ed. b<a. Cannot perform the analysis.

• Calculating the df
df = b− a

b = p(p+ 1)/2

where b is the number of elements in input matrix (i.e the variance-
covariance matrix/correlation matrix) and p is the number of items. While
for the a (the freely estimated parameters, have to calculate manually the
number of model parameters to be estimated, which are:

1. Factor loadings

2. Error variances

3. Factor variances

4. Factor covariances

• For Figure 1 example the df

b = 3(3 + 1)/2 = 6

thus a, using marker indicator approach

a = 2(factor loadings)+3(error variances)+1(factor variance)+0(factor covariances) = 6

df = b− a = 6− 6 = 0

which means our model is just identi�ed! Which is not a good thing. If
we calculate df for our AFFINITY OF STATISTICS factor (again from
our previous lecture), consisting of 5 items

b = 5(5 + 1)/2 = 15

a = 4(FLs)+5(error V ARs)+1(factor V AR)+0(factor COV AR) = 10

df = 15− 10 = 5

thus our model is overidenti�ed and ready for CFA!

6 Maximum likelihood estimation

• The most commonly used estimation method in CFA, but it needs multi-
variate normal data as we will check later in hands-on.
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• The �tting function that is minimized for the ML estimation is

FML = ln|S| − ln|Σ|+ trace[(S)(Σ−1)]− p

where |S| is the determinant of the input (i.e. observed) variance-covariance
matrix that is compared to |Σ| which is the determinant of variance-
covariance matrix as predicted by the measurement model. If (S) = (Σ),
thus (S)(Σ−1) = SS−1 = I , i.e the identity matrix. trace is the sum of
the diagonal of the matrix, thus in this case, trace(I)− p = 0.
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